Format

Send to

Choose Destination
Fundam Appl Toxicol. 1993 Jul;21(1):120-4.

DMBA induces programmed cell death (apoptosis) in the A20.1 murine B cell lymphoma.

Author information

1
University of New Mexico College of Pharmacy, Toxicology Program, Albuquerque 87131.

Abstract

The mechanism by which 7,12-dimethylbenz[a]anthracene (DMBA) produces cytotoxicity in lymphocytes was investigated in these studies using the murine A20.1 B cell lymphoma. Results show that in vitro exposure of these cells to 10-30 microM DMBA for 4 hr produced an increase in intracellular Ca2+, DNA fragmentation, and subsequent cell death. Elevation of Ca2+ and DNA fragmentation induced by DMBA were greatly pronounced when the A20.1 cells were exposed at high cell density (10(7) cells/ml). DMBA-induced DNA fragmentation and cell death were inhibited by coexposure of A20.1 cells to a calcium chelator (EDTA), a general nuclease and polymerase inhibitor (aurintricarboxylic acid), and a protein synthesis inhibitor (cycloheximide). These agents have been previously shown to inhibit apoptosis in lymphocytes and other cells exposed to chemical agents. We also found that cyclosporin A, an inhibitor of Ca(2+)-dependent pathways of T and B cell activation, prevented apoptosis in the A20.1 cell line. These results demonstrate that DMBA induces programmed cell death (apoptosis) in the A20.1 murine B cell lymphoma by Ca(2+)-dependent pathways. The increased sensitivity of A20.1 at high cell density to Ca2+ elevation and DNA fragmentation suggests that cell to cell interactions may also be important in this process.

PMID:
8365579
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center