Send to

Choose Destination
Nature. 1993 Aug 26;364(6440):796-8.

Disparity-sensitive cells in the owl have a characteristic disparity.

Author information

Department of Psychology, Queen's University, Kingston, Canada.


We experience the visual world as being three-dimensional. A major source of depth information derives from the slightly different views of each eye, leading to small variations in the retinal images ('disparities'). Neurons sensitive to visual disparities are thought to form the neural basis of stereo vision. Barn owls as well as several mammalian species have neurons that are sensitive to visual disparities. But how visual disparities are represented in the brain has been a matter of discussion ever since the first disparity-sensitive neurons were found some 25 years ago. Here we adopt a new approach to this problem and study the neural computation of visual disparities with a paradigm borrowed from auditory research. The measurement of interaural time difference (ITD) has many similarities with the measurement of visual disparity on the formal, algorithmic level. We speculate that the similarities might extend to the level of neural computation. The neural representation of ITD is well understood, and we have studied the representation of disparities with visual stimuli analogous to those successfully used in acoustic experiments. For example, ITD is converted in the brain to a pathlength on an axon that, owing to the finite conduction velocity in neurons, exactly matches the external ITD. This pathlength is called 'characteristic delay'. Our results suggest that there is an analogue of the characteristic delay in stereo vision which we propose to call 'characteristic disparity'.

Comment in

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center