Send to

Choose Destination
See comment in PubMed Commons below
Genome. 1993 Jun;36(3):602-9.

Application of the random amplified polymorphic DNA technique for the detection of polymorphism among wild and cultivated tetraploid wheats.

Author information

  • 1Department of Agronomy, Horticulture, and Entomology, Texas Tech University, Lubbock 79409.


Development of a high-density genetic linkage map of cultivated wheats using conventional molecular markers has lagged behind the other major food crops such as rice and tomato because of the large genome size and limited levels of genetic polymorphisms. Recently, random amplified polymorphic DNAs (RAPDs) have been suggested to provide an alternative to visualize more polymorphism. For the construction of a genetic linkage map in tetraploid wheats, one can use a strategy of intersubspecific crosses between the most dissimilar wild and cultivated tetraploid wheats that are easy to hybridize and result in fertile progeny. An assessment of the level of RAPDs among different accessions and varieties of wild and cultivated tetraploid wheats is required to fulfill this objective. We present here the data obtained using RAPD analysis of 40 primers in 20 accessions of wild tetraploid emmer wheats (Triticum turgidum L. ssp. dicoccoides) and 10 genotypes of cultivated tetraploid durum wheats (Triticum turgidum L. ssp. durum) selected from geographically diverse locations. We have observed a higher level of polymorphism among different accessions of wild emmer wheat from Israel. Turkey, and Jordan than the group of cultivated American, Turkish, and Syrian durum wheats. These data have been used to generate a dendrogram suggesting the genetic relationships among these genotypes, and the most dissimilar genotypes are identified for future mapping and gene tagging work.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center