Send to

Choose Destination
Exp Brain Res. 1993;94(1):65-87.

Functional topography of cat primary auditory cortex: responses to frequency-modulated sweeps.

Author information

Coleman Laboratory, Department of Otolaryngology, University of California, San Francisco 94143-0732.


The spatial distribution of neuronal responses to frequency-modulated (FM) sweeps was mapped with microelectrodes in the primary auditory cortex (AI) of barbiturate-anesthetized cats. Increasing and decreasing FM sweeps (upward- and downward-directed FM sweeps, respectively) covering a range of 0.25-64.0 kHz were presented at three different rates of frequency change over time (i.e, sweep speed). Using multiunit recordings, the high-frequency domain (between 3.2 and 26.3 kHz) of AI was mapped over most of its dorsoventral extent (as determined by the distribution of the excitatory bandwidth, Q10dB) for all six cases studied. The spatial distributions of the preferred sweep speed and the preferred sweep direction were determined for each case. Neuronal responses for frequency sweeps of different speeds appeared to be systematically distributed along the dorsoventral axis of AI. In the dorsal region, cortical cells typically responded best to fast and/or medium FM sweeps, followed more ventrally by cells that responded best to medium--then slow--, then medium-speed FM sweeps. In the more ventral aspect of AI (which in some cases may also have included cells located in the dorsal region of the second auditory field, AII), neurons generally preferred fast FM sweeps. However, a comparison of maps from different animals showed that there was more variability in the distribution of preferred speed responses in the ventral region of the cortex. The directional preference of units for FM sweeps was determined for the sweep speed producing the strongest response. Direction selectivity appeared to be nonrandomly distributed along the dorsoventral axis of AI. In general, units that responded best to upward-directed FM sweeps were located in the more dorsal and ventral aspects of AI while units that responded best to downward-directed FM sweeps were usually located in the mid-region of AI. Direction selectivity was also determined for multiunit responses at each of the three FM sweep speeds. In general, there was a relatively close agreement between the spatial distributions of direction selectivity determined for the strongest response with those calculated for the fast and medium speeds. The spatial distribution of direction selectivity determined for slow FM sweeps deviated somewhat from that determined for the strongest response. Near the dorsoventral center of the mapped areas, the distribution of units that responded best to downward sweeps tended to overlay the distribution of units that responded best to slow speeds, suggesting some spatial covariance of the two parameters.(ABSTRACT TRUNCATED AT 400 WORDS).

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center