Send to

Choose Destination
See comment in PubMed Commons below
Circ Res. 1993 Aug;73(2):379-85.

Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure.

Author information

Department of Medicine I, University of Munich, Germany.


Prolongation of the action potential has been postulated to be a major reason for the altered diastolic relaxation of the heart in patients with severe heart failure. To investigate the electrophysiological basis for this action potential prolongation in terminal heart failure, K+ currents were recorded in single ventricular myocytes isolated from 16 explanted hearts of patients undergoing transplantation. Results from diseased hearts were compared with ventricular cells isolated from six undiseased donor hearts. Action potential duration was significantly prolonged in cells from patients with heart failure. A delayed rectifier K+ current was hardly detectable in most cells, and if it could be recorded, it was very small in both diseased and undiseased cells. When currents were normalized for cell surface area, the average current density of the inward rectifier K+ current was significantly reduced in diseased cells when compared with normal control cells (hyperpolarization at -100 mV, -15.9 +/- 2.2 vs -9.0 +/- 1.2 microA/cm2; P < .01). In addition, a large transient outward K+ current could be recorded in human myocytes. The average current density of the time-dependent component of this transient outward K+ current was significantly reduced in heart failure (depolarization at +40 mV, 9.1 +/- 1.0 vs 5.8 +/- 0.64 microA/cm2; P < .01). Action potential prolongation in severe heart failure may partially be explained by a reduction in current densities of the inward rectifier K+ current and of the transient outward K+ current. These alterations may thereby have a significant effect on cardiac relaxation.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center