Format

Send to

Choose Destination
Arch Biochem Biophys. 1994 Jan;308(1):258-66.

Diterpenoid resin acid biosynthesis in conifers: characterization of two cytochrome P450-dependent monooxygenases and an aldehyde dehydrogenase involved in abietic acid biosynthesis.

Author information

1
Institute of Biological Chemistry, Washington State University Pullman 99164-6340.

Abstract

Abietic acid is a major component of the rosin fraction of oleoresin synthesized by grand fir (Abies grandis), lodgepole pine (Pinus contorta), and many other conifer species as a defensive secretion against insect and pathogen attack. The diterpenoid resin acid is derived from geranylgeranyl pyrophosphate via abietadiene, with subsequent oxidation of the C18-methyl of this olefin to abietadienol, abietadienal, and abietic acid. The pathway was confirmed by administering [1,2-14C]acetic acid to grand fir stems which incorporated the radiolabel into abietadiene, the corresponding alcohol and aldehyde, as well as abietic acid. Three different enzymatic activities, catalyzing the sequential oxidation of the olefin to abietic acid, were demonstrated in cell-free stem extracts of both grand fir and lodgepole pine. The first two oxidation steps were catalyzed by the microsomal fraction and required both oxygen and a reduced pyridine nucleotide (NADPH preferred). Both activities were strongly inhibited by CO (blue light reversible) and were differentially sensitive to several substituted N-heterocyclic inhibitors, suggesting that these two enzymes are distinct, microsomal cytochrome P450-dependent monooxygenases. A third enzymatic activity, catalyzing the oxidation of abietadienal to abietic acid, was located in the soluble protein fraction. This oxidation reaction employed NAD+ as cofactor, but did not require oxygen and was not inhibited by CO, indicating that this last step of abietic acid biosynthesis is catalyzed by an operationally soluble aldehyde dehydrogenase.

PMID:
8311462
DOI:
10.1006/abbi.1994.1036
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center