Send to

Choose Destination
Eur J Biochem. 1994 Jan 15;219(1-2):179-86.

The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant.

Author information

Botanisches Institut, Universit├Ąt Basel, Switzerland.


In the yeast Saccharomyces cerevisiae, accumulation of the non-reducing disaccharide trehalose is triggered by various stimuli that activate the heat-schock response. Several studies have shown a close correlation between trehalose levels and tolerance to heat stress, suggesting that trehalose may be a protectant which contributes to thermotolerance. In this study, we have examined mutants defective in genes coding for key enzymes involved in trehalose metabolism with respect to the heat-induced and stationary-phase-induced accumulation of trehalose and the acquisition of thermotolerance. Inactivation of either TPS1 or TPS2, encoding subunits of the trehalose-6-phosphate synthase/phosphatase complex, caused an inability to accumulate trehalose upon a mild heat-shock or upon initiation of the stationary phase and significantly reduced the levels of heat-induced and stationary-phase-induced thermotolerance. Deletion of NTH1, the gene coding for the neutral trehalase, resulted in a defect in trehalose mobilization during recovery from a heat shock which was paralleled by an abnormally slow decrease of thermotolerance. Our results provide strong genetic evidence that heat-induced synthesis of trehalose is an important factor for thermotolerance induction. In an accompanying study [Hottiger, T., De Virgilio, C., Hall, M. N., Boller, T. & Wiemken, A. (1993) Eur. J. Biochem. 219, 187-193], we present evidence that the function of heat-induced trehalose accumulation may be to increase the thermal stability of proteins.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center