Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):728-32.

Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates.

Author information

1
Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461.

Abstract

Eukaryotic cells require N-linked carbohydrates for survival. However, the biosynthetic intermediate Man5GlcNAc2Asn, in place of mature N-linked structures, allows glycoprotein synthesis and somatic cell growth to proceed normally. To determine whether the same would be true in a complex biological situation, the gene Mgat-1 was disrupted by homologous recombination in embryonic stem cells and transmitted to the germ line. The Mgat-1 gene encodes N-acetylglucosaminyltransferase I [GlcNAc-TI; alpha-1,3-mannosyl-glycoprotein beta-1,2-N-acetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:glycoprotein (N-acetyl-D-glucosamine to alpha-D-mannosyl-1,3-(R1)-beta-D-mannosyl-R2) beta-1,2-N-acetyl-D-glucosaminyltransferase, EC 2.4.1.101], the transferase that initiates synthesis of hybrid and complex N-linked carbohydrates from Man5GlcNAc2Asn. Mice lacking GlcNAc-TI activity did not survive to term. Biochemical and morphological analyses of embryos from 8.5 to 13.5 days of gestation showed that Mgat-1-/-embryos are developmentally retarded, most noticeably in neural tissue, and die between 9.5 and 10.5 days of development.

PMID:
8290590
PMCID:
PMC43022
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center