Send to

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 1993 Dec 11;21(24):5670-8.

High-resolution NMR study of a synthetic oligoribonucleotide with a tetranucleotide GAGA loop that is a substrate for the cytotoxic protein, ricin.

Author information

National Institute of Bioscience and Human Technology, Ministry of International Trade and Industry, Ibaraki, Japan.


Ricin is a cytotoxic protein that inactivates ribosomes by hydrolyzing the N-glycosidic bond at position A4324 in eukaryotic 28S rRNA. Its substrate domain forms a double helical stem and a 17-base loop that includes the sequence GAGA, the second adenosine of which corresponds to A4324. Recently, studies of mutant RNAs have shown that the four-nucleotide loop, GAGA, can function as a substrate for ricin. To investigate the structure that is recognized by ricin, we studied the properties of a short synthetic substrate, the dodecaribonucleotide r-CUCAGAGAUGAG, which forms a RNA hairpin structure with a GABA loop and a stem of four base pairs. The results of NMR spectroscopy allowed us to construct the solution structure of this oligonucleotide by restrained molecular-dynamic calculations. We found that the stem region exists as an A-form duplex. 5G and 8A in the loop region form an unusual G:A base pair, and the phosphodiester backbone has a turn between 5G and 6A. This turn seems to help ricin to gain access to 6A which is the only site of depurination in the entire structure. The overall structure of the GAGA loop is similar to those of the GAAA and GCAA loops that have been described but that are not recognized by ricin. Therefore, in addition to the adenosine at the depurination site, the neighboring guanosine on the 3' side (7G) may also play a role in the recognition mechanism together with 5G and 8A.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center