Send to

Choose Destination
See comment in PubMed Commons below
J Steroid Biochem Mol Biol. 1993 Dec;46(6):713-30.

Differential impact of flanking sequences on estradiol- vs 4-hydroxytamoxifen-liganded estrogen receptor binding to estrogen responsive element DNA.

Author information

  • 1Department of Biochemistry, University of Rochester School of Medicine and Dentistry, NY 14642.


The mechanism by which antiestrogens antagonize the ability of estrogen receptor (ER) to induce the transcription of estrogen-regulated genes is only partially understood. To examine the effect of estrogen responsive element (ERE) stereoalignment and flanking sequences on estradiol-liganded ER (E2-ER)-ERE and antiestrogen-liganded ER (4-hydroxytamoxifen-liganded ER or 4-OHT-ER)-ERE binding, several dimeric EREs, containing a perfect inverted repeat (5'-GGTCAgagTGACC-3') but lacking the AT-rich flanking sequences typical of highly estrogen-responsive promoters, were cloned into a plasmid vector. The ERE centers of symmetry were spaced 1.5, 2.0, 3.0, 6.4 and 6.7 helical turns apart. E2-ER and 4-OHT-ER binding to these constructs was specific and saturable, but orientation-independent and, in contrast to our earlier work with E2-ER binding to AT-rich EREs, not cooperative. The affinity of E2-ER binding decreased as the distance between adjacent EREs was increased, suggesting that E2-ER binding to closely spaced EREs is more stable (Kd = 0.38, 0.58, 0.83, 1.23, and 0.96 nM, respectively, for the above spacings). In contrast, the affinity of 4-OHT-ER binding increased with increased ERE spacing (Kd = 2.90, 4.79, 1.39, 1.77, and 0.92 nM, respectively). The presence of AT-rich sequences flanking the ERE increased the binding affinity of E2-ER and 4-OHT-ER, an increase reflected in slower dissociation rates of ER from these EREs. The AT-rich sequence also enhanced the binding capacity of E2-ER but not 4-OHT-ER. Since the binding capacity of 4-OHT-ER is identical with or without an AT-rich region, we suggest that flanking sequences are more important in stabilizing E2-ER binding and may be critical for cooperative binding to stereoaligned EREs.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center