Format

Send to

Choose Destination
Mol Gen Genet. 1993 Dec;241(5-6):602-15.

Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase.

Author information

1
Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Germany.

Abstract

DNA sequence analysis of a 12236 bp fragment, which is located upstream of nifE in Rhodobacter capsulatus nif region A, revealed the presence of ten open reading frames. With the exception of fdxC and fdxN, which encode a plant-type and a bacterial-type ferredoxin, the deduced products of these coding regions exhibited no significant homology to known proteins. Analysis of defined insertion and deletion mutants demonstrated that six of these genes were required for nitrogen fixation. Therefore, we propose to call these genes rnfA, rnfB, rnfC, rnfD, rnfE and rnfF (for Rhodobacter nitrogen fixation). Secondary structure predictions suggested that the rnf genes encode four potential membrane proteins and two putative iron-sulphur proteins, which contain cysteine motifs (C-X2-C-X2-C-X3-C-P) typical for [4Fe--4S] proteins. Comparison of the in vivo and in vitro nitrogenase activities of fdxN and rnf mutants suggested that the products encoded by these genes are involved in electron transport to nitrogenase. In addition, these mutants were shown to contain significantly reduced amounts of nitrogenase. The hypothesis that this new class of nitrogen fixation genes encodes components of an electron transfer system to nitrogenase was corroborated by analysing the effect of metronidazole. Both the fdxN and rnf mutants had higher growth yields in the presence of metronidazole than the wild type, suggesting that these mutants contained lower amounts of reduced ferredoxins.

PMID:
8264535
DOI:
10.1007/bf00279903
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center