Send to

Choose Destination
Brain Res. 1993 Oct 8;624(1-2):216-22.

The effects of in utero ethanol administration on the electrophysiological activity of rat nigrostriatal dopaminergic neurons.

Author information

Department of Psychiatry, Wayne State University School of Medicine, Detroit, MI 48201.


Iontophoresis and single-unit extracellular recording techniques were utilized to study the effects of in utero ethanol administration on nigrostriatal dopaminergic (NSDA) neurons in adult rats. Pregnant Sprague-Dawley rats consumed an ethanol-containing liquid diet providing 0%, 17.5%, or 35% ethanol-derived calories (EDC) from gestation day 8 until parturition. A separate group was fed standard rat chow as an ad lib, diet control. The dose-response curves of intravenously administered apomorphine on the spontaneous activity of NSDA neurons were shifted to the right in animals exposed to a liquid diet containing 17.5% or 35% EDC compared to 0% EDC or ad lib. control groups. The responsiveness of NSDA neurons to microiontophoretic application of the D-2 DA receptor agonist, quinpirole, was not altered following in utero ethanol exposure. These results suggest that in utero ethanol exposure may produce a down-regulation in the function of DA receptors distinct from the somatodendritic impulse-regulating D-2 autoreceptors. The firing pattern of NSDA neurons was also found to be altered after in utero ethanol exposure. There was a dissociation between the firing rate and burst activity in neurons that displayed burst-firing patterns in animals with in utero ethanol exposure. These observations agree with biochemical and behavioral studies that in utero ethanol exposure produces a long-lasting effect on the development of electrophysiological and pharmacological characteristics of midbrain DA systems in adulthood.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center