Send to

Choose Destination
Neuroscience. 1993 Sep;56(2):337-44.

Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat.

Author information

Laboratory of Neuroendocrinology, Rockefeller University, New York, NY 10021.


In order to determine whether newly born cells in the dentate gyrus of the adult rat express the neuronal marker, neuron-specific enolase, or the glial marker, glial fibrillary acidic protein, we performed combined immunohistochemistry and autoradiography on brains from adult rats perfused at various times ranging from 1 h to four weeks following [3H]thymidine administration. Light-microscopic examination revealed a negligible number of [3H]thymidine-labeled cells showing neuron-specific enolase immunoreactivity during mitosis. However, by two weeks after [3H]thymidine administration, a significant increase in the density of [3H]thymidine-labeled neuron-specific enolase-immunoreactive cells was detected. Three weeks following [3H]thymidine injection the majority of [3H]thymidine-labeled cells (> 70%) were immunoreactive for the neuronal marker. At the four-week time-point, [3H]thymidine-labeled neuron-specific enolase-immunoreactive cells were indistinguishable from neighboring granule cells. In contrast, glial fibrillary acidic protein immunoreactivity was observed in a small but significant number of [3H]thymidine cells at the 1-h time-point and the proportion of labeled cells that were immunoreactive for this cell marker did not increase with time. [3H]Thymidine-labeled cells that were immunoreactive for glial fibrillary acidic protein typically showed morphologic characteristics of radial glia at all time-points. At the 1-h time-point, the majority of [3H]thymidine-labeled cells were observed in the hilus (> 60%) with the remainder being located in the granule cell layer. However, with a four-week survival-time most [3H]thymidine-labeled cells (> 85%) were located in the granule cell layer. The majority of newly born cells in the adult dentate gyrus differentiate into neurons.(ABSTRACT TRUNCATED AT 250 WORDS).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center