Format

Send to

Choose Destination
Nature. 1993 Dec 2;366(6454):483-7.

The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition.

Author information

1
MRC Laboratory of Molecular Biology, Cambridge, UK.

Abstract

The Cys2-His2 zinc-finger is the most widely occurring DNA-binding motif. The first structure of a zinc-finger/DNA complex revealed a fairly simple mechanism for DNA recognition suggesting that the zinc-finger might represent a candidate template for designing proteins to recognize DNA. Residues at three key positions in an alpha-helical 'reading head' play a dominant role in base-recognition and have been targets for mutagenesis experiments aimed at deriving a recognition code. Here we report the structure of a two zinc-finger DNA-binding domain from the protein Tramtrack complexed with DNA. The amino-terminal zinc-finger and its interaction with DNA illustrate several novel features. These include the use of a serine residue, which is semi-conserved and located outside the three key positions, to make a base contact. Its role in base-recognition correlates with a large, local, protein-induced deformation of the DNA helix at a flexible A-T-A sequence and may give insight into previous mutagenesis experiments. It is apparent from this structure that zinc-finger/DNA recognition is more complex than was originally perceived.

PMID:
8247159
DOI:
10.1038/366483a0
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center