Send to

Choose Destination
See comment in PubMed Commons below
J Physiol. 1993 May;464:629-48.

Effects of osmolality and ionic strength on the mechanism of Ca2+ release in skinned skeletal muscle fibres of the toad.

Author information

Department of Zoology, La Trobe University, Bundoora, Melbourne, Australia.


1. The effects of increased osmolality and ionic strength on the mechanism of Ca2+ release were examined in mechanically skinned skeletal muscle fibres of the toad at 23 degrees C. Ca2+ release was induced by depolarizing the transverse tubular (T-) system by ionic substitution. 2. Increasing the osmolality of the 'myoplasmic' solution about four times (to 955 mosmol/kg), by addition of 700 mM sucrose to the standard potassium (K-)HDTA solution (HDTA: hexamethylenediamine-tetraacetate), only depressed the depolarization-induced response by about 46%. Much of this decrease could be attributed to a reduction in the Ca(2+)-sensitivity of the contractile proteins at this high osmolality. 3. Addition of > 400 mM sucrose itself often induced substantial Ca2+ release and a transient tension response. This 'spontaneous' release was (a) greatly enhanced when the sarcoplasmic reticulum (SR) had been heavily loaded with Ca2+, (b) little affected by inactivation of the voltage sensors by prolonged or permanent depolarization of the T-system and (c) blocked by Ruthenium Red (10 microM). 4. When both the osmolality and ionic strength were increased, by increasing the K-HDTA concentration, the depolarization-induced force was greatly reduced (to 35% at 818 mosmol/kg and 5% at 1095 mosmol/kg). Most of this reduction could be directly attributed to the substantially reduced maximum force and Ca2+ sensitivity of the contractile apparatus. 5. The small amount of releasable Ca2+ remaining in the SR after a single depolarization in a high-HDTA solution with 1 mM EGTA (to chelate the released Ca2+), indicated that depolarization could still elicit massive Ca2+ release at high ionic strength and osmolality (at 1 mM free Mg2+). 6. In contrast, when the total Mg2+ and ATP concentrations were raised about threefold (free [Mg2+] increased 2.7-fold) along with the osmolality and ionic strength, the ability of depolarization to elicit Ca2+ release was greatly hindered. 7. Osmotic compression of the skinned fibres to their in situ diameter by addition of 4% polyvinylpyrrolidone (PVP-40), substantially potentiated the depolarization-induced force responses, due partly to an increase in the Ca(2+)-sensitivity of the contractile apparatus. 8. These results indicate how increased intracellular osmolality, ionic strength and [Mg2+] produce the transient contraction and subsequent inhibition of tetanic tension in intact muscle fibres exposed to hypertonic solutions.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center