Format

Send to

Choose Destination
See comment in PubMed Commons below
Pharmacogenetics. 1993 Aug;3(4):189-96.

Pharmacogenetics of cocaine: II. Mesocorticolimbic and striatal dopamine and cocaine receptors in C57BL and DBA mice.

Author information

1
Alcohol Research Center, School of Pharmacy, University of Colorado Health Sciences Center, Denver 80262.

Abstract

Studies were conducted to determine whether genetic differences in behavioural effects of cocaine in C57BL/6 and DBA/2 mice might be mediated by strain differences in dopamine and serotonin transporters and dopamine D1 and D2 receptors in specific brain regions. Binding characteristics of [3H]CFT, a cocaine analogue, in the presence of either GBR12909, a dopamine uptake blocker or fluoxetine, a serotonin uptake blocker and binding of [3H]-paroxetine, a specific serotonin uptake receptor antagonist, were evaluated. We observed regional differences in [3H]CFT binding parameters in the presence of GBR12909 or fluoxetine, but no strain differences by brain region were observed. There were no differences in [3H]paroxetine binding characteristics between corresponding brain regions from C57BL and DBA/2 mice. The D1 antagonist, [3H]SCH23390 and the D2 ligands [3H]sulpiride or [125I]epidepride were used to determine dopamine receptor characteristics. Regional differences were found in [3H]SCH23390 and [3H]sulpiride, with higher affinities and lower densities in frontal cortex compared to striatum; with no differences in [3H]SCH23390 binding in corresponding tissues from C57BL and DBA/2 brains. There were strain-related differences in [3H]sulpiride and in [3H]epidepride binding in striatal membranes with higher densities in C57BL than in DBA/2. Our findings suggest striatal D2 receptor differences are possibly involved in genetic differences in cocaine-related behaviours.

PMID:
8220438
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center