Send to

Choose Destination
Am J Physiol. 1994 May;266(5 Pt 1):E796-803.

Liver glycogen turnover in fed and fasted humans.

Author information

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510.


Whether liver glycogen synthesis and breakdown occur simultaneously during net glycogen synthesis was assessed in fed and fasted healthy humans. The peak intensity of the carbon-1 (C1) resonance of the glycosyl units of glycogen was monitored with 13C nuclear magnetic resonance spectroscopy during [1-13C]glucose infusion followed by unlabeled glucose infusion. The C1 peak intensity increased almost linearly during the [1-13C]glucose infusion, reflecting a near linear rate of glycogen synthesis. When switched to unlabeled glucose, the C1 peak intensity reached a plateau in the fasted subjects and declined in the fed subjects, reflecting active glycogenolysis during a time of net glycogen synthesis. We conclude that liver glycogen synthesis and degradation occur simultaneously in humans under conditions of net glycogen synthesis. The relative turnover rate was significantly higher in the fed (57 +/- 3%) than in the fasted state (31 +/- 8%; P < 0.01). The results indicate that glycogen may regulate its rate of breakdown and that liver glycogen turnover may be an important factor in limiting the accumulation of liver glycogen in humans.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center