Format

Send to

Choose Destination
Acta Trop. 1994 Mar;56(2-3):173-94.

Resistance to the nitroheterocyclic drugs.

Author information

1
Queensland Institute of Medical Research, Bancroft Centre, Brisbane, Australia.

Abstract

The nitroheterocyclic drugs have been available since the early 1960's for the treatment of anaerobic protozoa. The application of these drugs has widened since then and they are presently used to treat anaerobic pathogenic bacteria and protozoa. The activity of the nitroheterocyclic drugs depends on the all-important nitro group attached to the imidazole or furan ring. Although the nitro radicals, generated by reduction of the parent drugs, are similar for both families of nitroheterocyclics, the nitroimidazoles and the nitrofurans, the electron potential of each is different and thus the mechanism of action depends on different pathways. The nitroimidazoles depend on reduction by ferredoxin or flavodoxin. The nitrofurans require nitroreductase activity, but the natural substrate of these enzymes has not been identified. Increased use of nitroheterocyclic drugs, in response to drug resistance to other commonly used antibiotics, has in turn resulted in drug resistance to a number of nitroheterocyclic drugs. Bacteroides strains and other bacteria, including Helicobacter, have developed resistance. Among the protozoa, Trichomonas has developed resistance to metronidazole via a number of mechanisms, especially a decrease in drug reduction, as a result of alterations in the electron transport pathways. Resistance to both types of nitroheterocyclic drugs has been reported in Giardia. Although resistance to these drugs is not widespread, their increased use world-wide as a prophylaxis and in chemotherapy will inevitably result in increased resistance in organisms commonly found in asymptomatic infections, including Trichomonas, Giardia and Entamoeba. However, the variety of substitutions which can be attached to the ring structures has led to a great variety of drugs being synthesised, some of which are many-fold more active than the commonly prescribed nitroheterocyclics. With careful administration of currently available drugs and continued interest in synthesising more active compounds, we can optimistically expect to have useful nitroheterocyclic drugs available for some time.

PMID:
8203303
DOI:
10.1016/0001-706x(94)90062-0
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center