Send to

Choose Destination
See comment in PubMed Commons below
Brain Res. 1994 Feb 28;638(1-2):203-10.

Aromatase-immunoreactivity is localised specifically in neurones in the developing mouse hypothalamus and cortex.

Author information

MRC Neuroendocrine Development and Behaviour Group, BABRAHAM Institute, Cambridge, UK.


Local formation of oestrogens from androgens by aromatase cytochrome P-450 within brain cells is crucial for the sexual differentiation of the mammalian CNS. Aromatase activity has been detected in several brain regions of the developing rodent brain. In the present study, we used a mouse-specific, peptide-generated, polyclonal aromatase antibody to determine whether neurones and/or glial cells in the developing brain are involved in androgen aromatization and if aromatase-immunoreactive (Arom-IR) cells exhibit a sex-specific distribution and regional-specific morphological characteristics. For these experiments, gender-specific cell cultures were prepared from embryonic day 15 mouse hypothalamus and cortex. Specificity of the immunoreaction was confirmed by Western-blot analysis and by inhibition of aromatase activity using tissue homogenates from mouse ovaries and male newborn hypothalamus and from male hypothalamic cultures with known aromatase activity, respectively. Arom-IR cells were found in both hypothalamic and cortical cultures. Double-labeling experiments revealed that Arom-IR cells co-stained only for the neuronal marker MAP II, but never for glial markers. Therefore aromatase immunoreactivity is specifically neuronal. Regional differences in the morphology of Arom-IR neurones were observed between both brain regions. In hypothalamic cultures, IR-neurones represented a heterologous population of phenotypes (magnocellular, small bipolar and multipolar neurones with long processes showing varicose-like structures or without processes). Cortical Arom-IR neurones were always oval in shape with short or no IR-processes. Sexual dimorphisms in numbers of Arom-IR neurones were found in the hypothalamus with significantly higher cell numbers in male cultures.(ABSTRACT TRUNCATED AT 250 WORDS)

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center