Send to

Choose Destination
Cereb Cortex. 1994 Jan-Feb;4(1):78-96.

Synaptogenesis in the prefrontal cortex of rhesus monkeys.

Author information

D├ępartement des Biotechnologies, Institut Pasteur, Paris, France.


Since the turn of the century, the prefrontal association areas of the cerebral cortex have been thought to be among the last regions of the cortical mantle to develop. We have examined the course of synaptogenesis in the macaque prefrontal cortex by quantitative electron microscopic analysis in 25 rhesus monkeys ranging in age from embryonic day 47 (E47) to 20 years of age. A series of overlapping electron micrographs spanning the whole cortical thickness in each animal provided data on the number, the proportion, and the density of synapses per unit area (NA) and per unit volume (NV) of neuropil. The tempo and kinetics of synapse formation in prefrontal cortex closely resemble those described for sensory and motor areas, particularly during the stages of synapse acquisition and overproduction (Rakic et al., 1986). In young embryos, we describe a precortical phase (E47-E78), when synapses are found only above and below, but not within, the cortical plate. Following that, there is an early cortical phase, from E78 to E104, during which synapses accumulate within the cortical plate, initially exclusively on dendritic shafts. The next rapid phase of synaptogenesis begins at 2 months before birth and ends approximately at 2 months after birth, culminating with a mean density of 750 million synapses per cubic micrometer. This accumulation is largely accounted for by a selective increase in axospine synapses in the supragranular layers. The period of explosive synaptic density is followed by a protracted plateau stage that lasts from 2 months to 3 years of age when synaptic density remains relatively constant. The final period of decline, from 3 years through over 20 years of age, is marked by a slight but statistically significant decline in synaptic density. Concurrent recruitment of synapses with that of sensory and motor areas supports the concept that the initial establishment of cortical circuitry is governed by general mechanisms common to all areas, independent of their specific functional domain. The finding that synaptic density is relatively stable from early adolescence through puberty (the plateau period) is indicative of the importance, in primates, of a consistent and high synaptic density during the formative years when learning experiences are most intense.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center