Format

Send to

Choose Destination
See comment in PubMed Commons below
Circ Res. 1994 May;74(5):1005-8.

ATP-sensitive K+ channels mediate dilatation of cerebral arterioles during hypoxia.

Author information

1
Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242.

Abstract

We tested the hypothesis that dilatation of cerebral arterioles during hypoxia is mediated by activation of ATP-sensitive K+ channels. The diameter of pial arterioles was measured through a closed cranial window in anesthetized rabbits. Topical application of aprikalim (10(-6) mol/L), a direct activator of ATP-sensitive K+ channels, dilated pial arterioles by 18 +/- 3% (mean +/- SEM). Glibenclamide (10(-6) mol/L), an inhibitor of ATP-sensitive K+ channels, virtually abolished aprikalim-induced vasodilatation. When arterial PO2 was reduced from 129 +/- 3 to 25 +/- 1 mm Hg, the diameter of cerebral arterioles increased by 66 +/- 9% (P < .05). Glibenclamide inhibited dilatation of pial arterioles during hypoxia by 46 +/- 5% (P < .05). In contrast, vasodilatation in response to sodium nitroprusside was not altered by glibenclamide. Topical application of adenosine (10(-4) mol/L) increased arteriolar diameter by 21 +/- 4%. Glibenclamide did not affect adenosine-induced vasodilatation. These findings suggest that dilatation of cerebral arterioles in response to hypoxia is mediated, in part, by activation of ATP-sensitive K+ channels.

PMID:
8156623
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center