Send to

Choose Destination
FEMS Immunol Med Microbiol. 1994 Jan;8(1):13-26.

The significance of the hydrophilic backbone and the hydrophobic fatty acid regions of lipid A for macrophage binding and cytokine induction.

Author information

Forschungsinstitut Borstel, Institut für Experimentelle Biologie und Medizin, FRG.


Natural partial structures of lipopolysaccharide (LPS) as well as synthetic analogues and derivatives of lipid A were compared with respect to inhibit the binding of 125I-labelled Re-chemotype LPS to mouse macrophage-like J774.1 cells and to induce cytokine-release in J774.1 cells. LPS, synthetic Escherichia coli-type lipid A (compound 506) and tetraacyl precursor Ia (compound 406) inhibited the binding of 125I-LPS to macrophage-like J774.1 cells and induced the release of tumor necrosis factor alpha (TNF alpha) and interleukin 6 (IL-6). Deacylated R-chemotype LPS preparations were completely inactive in inhibiting binding and in inducing cytokine-release. Among tetraacyl compounds, the inhibition-capacity of LPS-binding was in decreasing order: PE-4 (alpha-phosphonooxyethyl analogue of 406) > 406 >> 404 (4'-monophosphoryl partial structure of 406) > 405 (1-monophosphoryl partial structure of 406). In the case of hexaacyl preparations, compounds 506, PE-1 (alpha-phosphonooxyethyl analogue of 506) and PE-2 (differing from PE-1 in having 14:0 at positions 2 and 3 of the reducing GlcN) inhibited LPS-binding and induced cytokine release equally well, whereas preparation PE-3 (differing from PE-2 in containing a beta-phosphonooxyethyl group) showed a substantially lower capacity in binding-inhibition and cytokine-induction. The conclusion is that chemical changes in the hydrophilic lipid A backbone reduce the capacity of lipid A to bind to cells, whereas the number of fatty acids determines the capacity of lipid A to activate cells. These results indicate that the bisphosphorylated hexosamine backbone of lipid A is essential for specific binding of LPS to macrophages and that the acylation pattern plays a critical role for LPS-promoted cell activation, i.e. cytokine induction.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center