Send to

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 1994 Mar 25;22(6):972-6.

The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA.

Author information

Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, School of Medicine, Los Angeles 90033.


The modified base, 5-methylcytosine, constitutes approximately 1% of human DNA, but sites containing 5-methylcytosine account for at least 30% of all germline and somatic point mutations. A genetic assay with a sensitivity of 1 in 10(7), based on reversion to neomycin resistance of a mutant pSV2-neo plasmid, was utilized to determine and compare the deamination rates of 5-methylcytosine and cytosine in double-stranded DNA for the first time. The rate constants for spontaneous hydrolytic deamination of 5-methylcytosine and cytosine in double-stranded DNA at 37 degrees C were 5.8 x 10(-13) s-1 and 2.6 x 10(-13) s-1, respectively. These rates are more than sufficient to explain the observed frequency of mutation at sites containing 5-methylcytosine and emphasize the importance of hydrolytic deamination as a major source of human mutations.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center