Format

Send to

Choose Destination
Mol Microbiol. 1994 Feb;11(3):581-8.

An inner-membrane-associated virulence protein essential for T-DNA transfer from Agrobacterium tumefaciens to plants exhibits ATPase activity and similarities to conjugative transfer genes.

Author information

1
Department of Plant Pathology, University of California, Davis 95616.

Abstract

The 9.5 kb virB operon is the largest of the six major operons in the Ti plasmid vir region. This operon contains eleven genes, the largest of which is virB4. This gene encodes an 84 kDa protein whose function has not been identified. Its roles in conferring virulence on Agrobacterium tumefaciens and in the T-DNA transfer process were determined by generating non-polar mutants by using the Tn5pvirB transposon in which the virB promoter is transcribed downstream of its position of insertion. Several independent mutants were isolated and each insertion site in virB4 was confirmed by nucleotide sequence analysis. These mutants were tested for T-DNA transfer ability by agroinfection and for tumorigenicity by inoculation in Brassica and Datura. All mutants were agroinfection- and tumorigenicity-negative. These data strongly suggest that virB4 is essential for both the interkingdom transfer of the T-DNA and virulence. Furthermore, by using anti-VirB4 serum, the protein product of virB4 was localized to the inner-membrane fraction of A. tumefaciens. Purified VirB4 protein hydrolyses ATP and this activity was quenched by the anti-VirB4 serum. The energy generated by VirB4 ATPase therefore may be used to transfer T-DNA or to assemble the T-DNA transfer apparatus on the bacterial membrane. Protein sequence analyses revealed striking similarities between VirB4 protein and the proteins required for conjugative transfer, which include TraC, TrwK, and TrbE of plasmids F, R388, and RP4, respectively. These findings suggest that VirB proteins play a direct role in the assembly of a conjugative transfer apparatus required for the transfer of the T-DNA from A. tumefaciens to plant cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center