Send to

Choose Destination
See comment in PubMed Commons below
Protein Sci. 1994 Jan;3(1):103-8.

Kinetics and thermodynamics of thermal denaturation in acyl carrier protein.

Author information

Department of Chemistry, Yale University, New Haven, Connecticut 06511.


The denaturation of Escherichia coli acyl carrier protein (ACP) in buffers containing both monovalent and divalent cations was followed by variable-temperature NMR and differential scanning calorimetry. Both high concentrations of monovalent salts (Na+) and moderate concentrations of divalent salts (Ca2+) raise the denaturation temperature, but calorimetry indicates that a significant increase in the enthalpy of denaturation is obtained only with the addition of a divalent salt. NMR experiments in both low ionic strength monovalent buffers and low ionic strength monovalent buffers containing calcium ions show exchange between native and denatured forms to be slow on the NMR time scale. However, in high ionic strength monovalent buffers, where the temperature of denaturation is elevated as it is in the presence of Ca2+, the transition is fast on the NMR time scale. These results suggest that monovalent and divalent cations may act to stabilize ACP in different ways. Monovalent ions may nonspecifically balance the intrinsic negative charge of this protein in a way that is similar for native, denatured, and intermediate forms. Divalent cations provide stability by binding to specific sites present only in the native state.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center