Format

Send to

Choose Destination
Biochemistry. 1994 Apr 5;33(13):3934-40.

Inactivation of interleukin-1 beta converting enzyme by peptide (acyloxy)methyl ketones.

Author information

1
Department of Enzymology, Merck Research Laboratories, Rahway, New Jersey 07065.

Abstract

Interleukin-1 beta converting enzyme (ICE) is a cysteine protease in monocytes that is essential for the proteolytic activation of interleukin-1 beta, an important mediator of inflammation. Peptide (acyloxy)methyl ketones designed with the appropriate peptide recognition sequence (Ac-Tyr-Val-Ala-Asp-CH2-OC(O)Ar) are potent, competitive, irreversible inhibitors. Mass spectrometry and sequence analysis indicate that inactivation proceeds through expulsion of the carboxylate leaving group to form a thiomethyl ketone with the active site Cys285. The second-order inactivation rate is independent of leaving group pKa, with an approximate value of 1 x 10(6) M-1 s-1. This rate constant is directly proportional to the reaction macroviscosity, indicating that the rate-limiting step in inactivation is association of enzyme and inhibitor, rather than any bond-forming reactions. Affinity labeling of THP.1 monocytic cell cytosol with a biotinylated tetrapeptide (acyloxy)methyl ketone for 28 half-lives resulted in labeling of only ICE, demonstrating the selectivity of these inhibitors. These inhibitors are relatively inert toward other bionucleophiles such as glutathione (< 5 x 10(-4) M-1 s-1), making them excellent candidates for in vivo studies of enzyme inhibition.

PMID:
8142397
DOI:
10.1021/bi00179a020
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center