Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1994 Mar 11;269(10):7390-6.

Differential phosphorylation of two size forms of the N-type calcium channel alpha 1 subunit which have different COOH termini.

Author information

1
Department of Pharmacology, University of Washington, Seattle 98195.

Abstract

Two size forms of the class B N-type calcium channel alpha 1 subunit were recently identified with CNB1, an antipeptide antibody directed against an intracellular loop of this channel (Westenbroek, R.E., Hell, J.W., Warner, C., Dubel, S.J., Snutch, T.P., and Catterall, W.A. (1992) Neuron 9, 1099-1115). To investigate the biochemical differences between these two size forms, the antibodies CNB3 and CNB4 were raised against peptides with sequences corresponding to the COOH-terminal end of the full-length form. Immunoblot experiments demonstrated that both antibodies specifically recognize the longer form of 250 kDa, indicating that the COOH-terminal regions of the two size forms of the class B N-type channel alpha 1 subunit are different. Phosphorylation experiments with immunopurified calcium channels and different second messenger-activated protein kinases revealed that both the 220- and 250-kDa forms of the class B N-type calcium channel alpha 1 subunit are substrates for cAMP-dependent protein kinase, cGMP-dependent protein kinase, and protein kinase C. These three kinases incorporated approximately 1 mol of phosphate/mol of binding sites for omega-conotoxin (omega-CgTx) GVIA, a ligand specific for the N-type calcium channel, and may regulate the activity of both forms in vivo. In contrast, calcium- and calmodulin-dependent protein kinase II (CaM kinase II) phosphorylated only the long form of the class B N-type calcium channel alpha 1 subunit, with a stoichiometry of 0.5 mol of phosphate/mol of total omega-CgTx GVIA binding sites. Specific phosphorylation of the long form of the class B alpha 1 subunit by CaM kinase II may differentially regulate the function of N-type calcium channels containing different size forms of their alpha 1 subunits in vivo.

PMID:
8125957
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center