Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuron. 1993 Oct;11(4):725-38.

The contribution of NMDA and non-NMDA receptors to the light-evoked input-output characteristics of retinal ganglion cells.

Author information

1
Bioengineering Graduate Group, University of California, San Francisco 94143-0730.

Abstract

To examine how light-evoked excitatory synaptic inputs to retinal ganglion cells are transformed into output patterns of activity, action potentials were recorded with cell-attached patch-clamp techniques, and then EPSCs and EPSPs were recorded from the same cell in the whole-cell configuration. AP7, an NMDA antagonist, reduced the light-evoked peak spike frequency 36% +/- 21% (mean +/- SD) and reduced the EPSC amplitude, indicating a major role for NMDA receptors in the light response. CNQX, a non-NMDA receptor antagonist, reduced the light-evoked peak spike frequency 28% +/- 22%. CNQX also caused a voltage- and magnesium-dependent delay in spike onset. AP7 and CNQX, however, did not differ significantly in their effect on the EPSC time course, indicating that postsynaptic cellular properties are responsible for the delay observed in the presence of CNQX. These results show that the NMDA receptor contribution to the excitatory response is increased as the cell is depolarized from rest by non-NMDA input.

PMID:
8104431
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center