Format

Send to

Choose Destination
Mol Microbiol. 1993 May;8(3):543-58.

Nucleotide sequence of a 13.9 kb segment of the 90 kb virulence plasmid of Salmonella typhimurium: the presence of fimbrial biosynthetic genes.

Author information

1
Department of Microbiology, School of Medicine, University of Virginia, Charlottesville 22908.

Abstract

The 90kb plasmid resident in Salmonella typhimurium confers increased virulence in mice by promoting the spread of infection after invasion of the intestinal epithelium. The nucleotide sequence of a 13.9kb segment of this plasmid known to encode an outer membrane protein related in sequence to components of fimbrial biosynthesis in enteric bacteria was determined. This cloned segment between the repB and repC replicon regions programmed expression of abundant surface fimbriae in Escherichia coli and S. typhimurium cells. A 7kb region contained seven open reading frames, the protein products of five of which were related in sequence to regulatory, structural, and assembly proteins of adherence fimbriae/pili, such as the P and K88 pili. These five genes and two adjacent ones which were not markedly related to proteins in the data bases comprise the pef (plasmid-encoded fimbriae) locus. Transposon TnphoA insertions in four genes in the pef locus (pefA, pefC, orf5 and orf6) resulted in active PhoA fusions and blocked or reduced the surface presentation of fimbriae, indicating that the proteins encoded by these four genes are translocated at least across the cytoplasmic membrane and contribute to formation of the fimbrial structure. The differences in genetic organization and protein sequence relatedness from other fimbrial gene clusters suggest that the pef locus might encode a novel type of fimbria. Between the pef and the repB loci, there were five open reading frames, one of which (orf8) gave rise to active PhoA fusions but was not necessary for fimbrial expression. Two of the other proteins were homologous to transcription regulatory proteins and a third was the rck gene, which encodes an outer membrane protein that confers complement resistance to serum-sensitive hosts.

PMID:
8100983
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center