Send to

Choose Destination
Gene. 1993 Apr 15;126(1):43-9.

Biogenesis and regulation of the Vibrio cholerae toxin-coregulated pilus: analogies to other virulence factor secretory systems.

Author information

Department of Microbiology and Immunology, University of Tennessee, Memphis 38163.


Biogenesis of the toxin-coregulated pilus (TCP) of Vibrio cholerae 01 is essential for successful bacterial colonization of the small intestine. Pilus assembly requires the products of at least seven genes located on the chromosome adjacent to the pilin-encoding gene, tcpA. Previously reported TnphoA insertions in the TCP-assembly-deficient V. cholerae strains, KP2.21 and KP4.2, were isolated from the chromosome for further analysis. Nucleotide sequencing of the tcpE::phoA and tcpF::phoA fusions and corresponding clones of the region containing the intact genes revealed the presence of two open reading frames (ORFs) of 340 and 338 amino acids, designated TcpE and TcpF, respectively. The partial sequence of an ORF downstream from the TcpF coding sequence was determined to correspond to the global virulence regulator, ToxT. Proteins corresponding to the observed ORFs were visualized with the T7 promoter/RNA polymerase expression system. Computer-generated alignment algorithms predict that a homology exists between TcpE and the Klebsiella pneumoniae pullulanase secretion proteins PulD and PulF, the Xanthomonas campestris extracellular enzyme secretion factor XpsF, the Bacillus subtilis DNA competence protein ComG-ORF2, and the Yersinia enterocolitica Yop secretion determinant YscC. These observations provide a model to investigate further the relationship between the secretion mechanisms utilized by these seemingly diverse virulence determinants. Additionally, an extreme C-terminal segment of TcpE shows striking homology to the transmembrane segment of the eukaryotic integrin beta-1 chain, which could imply a role for TcpE in not only TCP secretion, but also host cell interaction.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center