Format

Send to

Choose Destination
See comment in PubMed Commons below
Nature. 1994 Aug 25;370(6491):666-8.

Structural similarity between the p17 matrix protein of HIV-1 and interferon-gamma.

Author information

1
Department of Biochemistry, University of Oxford, UK.

Abstract

The human immunodeficiency virus (HIV) matrix protein, p17, forms the outer shell of the core of the virus, lining the inner surface of the viral membrane. The protein has several key functions. It orchestrates viral assembly via targeting signals that direct the gag precursor polyprotein, p55, to the host cell membrane and it interacts with the transmembrane protein, gp41, to retain the env-encoded proteins in the virus. In addition, p17 contains a nuclear localization signal that directs the preintegration complex to the nucleus of infected cells. This permits the virus to infect productively non-dividing cells, a distinguishing feature of HIV and other lentiviruses. We have determined the solution structure of p17 by nuclear magnetic resonance (NMR) with a root-mean square deviation for the backbone of the well-defined regions of 0.9 A. It consists of four helices connected by short loops and an irregular, mixed beta-sheet which provides a positively charged surface for interaction with the inner layer of the membrane. The helical topology is unusual; the Brookhaven protein database contains only one similar structure, that of the immune modulator interferon-gamma.

PMID:
8065455
DOI:
10.1038/370666a0
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center