Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1994 Aug 26;269(34):21395-8.

Agonists and antagonists of protein kinase C function, derived from its binding proteins.

Author information

  • 1Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305-5332.

Abstract

Physical association between proteins involved in signal transduction is required for their functions. Therefore, identification of the interacting sites in the signaling molecules can lead to the development of means to modulate these interactions. We applied this approach to study signal transduction by protein kinase C (PKC). We have previously identified potential PKC binding sites in two PKC binding proteins (annexin I and RACK1). Peptides derived from these sequences inhibit PKC binding to RACK1 in vitro. Here, we tested the ability of two of these peptides, I (KGDYEKILVALCGGN) and rVI (DIINALCF), to affect PKC-mediated function in vivo. The peptides were microinjected into Xenopus oocytes, and insulin-induced beta PKC translocation and oocyte maturation were examined. The peptides had opposite activities on oocyte; peptide I inhibited whereas peptide rVI stimulated insulin-induced Xenopus oocyte maturation. As expected, beta PKC translocation from the cytosol to the particulate fraction of the Xenopus oocytes was inhibited after microinjection of peptide I and induced after microinjection of peptide rVI. Moreover, peptide rVI caused translocation of beta PKC and oocyte maturation without hormone stimulation. In the absence of PKC activators, peptide rVI but not peptide I, activated PKC in vitro as demonstrated in three assays: increased sensitivity to Arg-C endopeptidase, PKC autophosphorylation, and histone phosphorylation. Therefore, although peptides I and rVI have sequence homology, one mimicked hormone-induced PKC-mediated function whereas the other inhibited this hormone-induced function. The molecular mechanisms underlying these opposing effects of the peptides are discussed.

PMID:
8063768
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center