Send to

Choose Destination
Cell Calcium. 1994 Apr;15(4):305-16.

Calcium-dependent block of ryanodine receptor channel of swine skeletal muscle by direct binding of calmodulin.

Author information

Department of Physiology, University of Wisconsin School of Medicine, Madison.


The interaction of the Ca2+ binding protein calmodulin (CaM) with the ryanodine receptor of the sarcoplasmic reticulum (SR) of pig skeletal muscle was investigated by [3H]-ryanodine binding, planar bilayer recordings, and rapid filtration of 45Ca(2+)-loaded SR. Inhibition of [3H]-ryanodine binding by CAM was phosphorylation-independent, had an IC50 of approximately 0.1 microM and was optimal at 10 microM Ca(2+). CaM also inhibited [3H]-ryanodine binding to CHAPS-solubilized and purified ryanodine receptors, suggesting a direct CaM-ryanodine receptor interaction. In single channel recordings, CaM blocked Ca2+ release channels in a Ca(2+)-dependent manner by decreasing the number of open events per unit time without affecting the mean open time or unitary channel conductance. Rapid filtration of 45Ca2+ passively loaded into SR vesicles showed that CaM blocked Ca2+ release within milliseconds of exposure of SR to a Ca2+ release medium containing 10 microM CaM. In controls, an increase in extravesicular Ca2+ from 7 nM to 10 microM resulted in a release of 47 +/- 10% of the 45Ca2+ in 20 ms. CaM reduced the release to 23 +/- 12% in the same period. These results are compatible with a direct mechanism of Ca2+ release channel blockade by CaM and suggest that CaM could play a significant role in the inactivation of SR Ca2+ release during excitation-contraction coupling.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center