Send to

Choose Destination
Brain Res. 1994 Apr 11;642(1-2):59-69.

Inhibitory neurotransmission in rat spinal cord: co-localization of glycine- and GABAA-receptors at GABAergic synaptic contacts demonstrated by triple immunofluorescence staining.

Author information

Institute of Pharmacology, University of Zurich, Switzerland.


Synaptic inhibition in rat spinal cord is mediated by the amino acids gamma-aminobutyric acid (GABA) and glycine. Most spinal cord neurons respond to both neurotransmitters, suggesting co-expression of GABAA- and strychnine-sensitive glycine-receptors in individual cells. While the distribution of glycine-receptors has been extensively characterized, much less is known about the cellular localization of GABAA-receptors in spinal cord neurons. In the present study, the distribution of GABAA-receptors was analyzed immunohistochemically with a subunit-specific antiserum recognizing the alpha 1-subunit. Their co-localization with glycine-receptors and their apposition to GABAergic axon terminals were assessed by confocal laser microscopy in sections processed for double- and triple-immunofluorescence staining, using a monoclonal antibody against the 93 kDa glycine-receptor-associated protein, gephyrin, and an antiserum to glutamic acid decarboxylase. Staining for the GABAA-receptor alpha 1-subunit decorated the soma and dendrites of numerous neurons in laminae III-VIII and X of the spinal cord, revealing their morphology in clear detail. By contrast, laminae II and IX contained little immunoreactivity for these GABAA-receptors. Double-immunofluorescence staining showed that most GABAA-receptor-positive cells in layers III-VIII and X also exhibited a prominent glycine-receptor immunoreactivity. Both types of receptors had very similar distribution patterns in the cell membrane and were frequently co-localized in sites apposed to GABAergic axon terminals. These results indicate that GABAA- and glycine-receptors may co-exist within single postsynaptic densities, suggesting a possible synergism in the action of GABA and glycine in spinal cord neurons.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center