The effect of temperature on the respiration of cultured neural cells as studied by a novel electron paramagnetic resonance technique

Biochim Biophys Acta. 1994 Jul 6;1200(2):205-14. doi: 10.1016/0304-4165(94)90137-6.

Abstract

A new technique to study cellular respiration under steady-state conditions is described. For detection of oxygen concentration the technique utilizes lithium phthalocyanine crystals whose, electron paramagnetic resonance (EPR) spectra are highly sensitive to oxygen. A gas permeable poly(tetrafluoroethylene) (TFE) capillary (i.d. = 0.81 mm; o.d. = 0.86 mm) is used to control the oxygen flux to the sample of cultured neural cells (N1E-115) of 50 microliters volume. The measured oxygen permeability of the TFE capillary exhibits Arrhenius law behavior (Ep = 21.2 kJ/mole) in the temperature range 15-43 degrees C. The observed increase in the respiratory rate of the N1E-115 cells with temperature can be described with an apparent activation energy of Ea = 110 +/- 20 kJ/mol. Cellular depolarization with 35 mM KCl increases the respiratory rate of the cells but gives the same activation energy. The results confirm a hypothesis that respiratory depolarizers affect only the total enzyme concentration and do not change the apparent Ea of the substrate-enzyme decomposition reaction. The theoretical treatment of oxygen diffusion in the system provides guidelines for designing steady-state cellular respiration experiments.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Diffusion
  • Electron Spin Resonance Spectroscopy / methods*
  • Indoles
  • Mathematics
  • Neuroblastoma / metabolism
  • Organometallic Compounds
  • Oxygen / analysis
  • Oxygen Consumption*
  • Temperature*
  • Tumor Cells, Cultured

Substances

  • Indoles
  • Organometallic Compounds
  • lithium phthalocyanine
  • Oxygen