Format

Send to

Choose Destination
Eur J Pharmacol. 1994 Aug 11;261(1-2):171-8.

Hypersensitivity to serotonin and its agonists in serotonin-hyperinnervated neostriatum after neonatal dopamine denervation.

Author information

1
Centre de Recherche en Sciences Neurologiques, Faculté de Médecine, Université de Montréal, Québec, Canada.

Abstract

Neonatal destruction of the nigrostriatal dopamine projection by intraventricular 6-hydroxydopamine leads to a serotonin (5-hydroxytryptamine, 5-HT) hyperinnervation of the adult neostriatum accompanied by increased radioligand binding to 5-HT1B, 5-HT1nonAB and 5-HT2 receptors. The consequences of such 5-HT receptor changes on neuronal responsiveness to 5-HT and corresponding receptor agonists were assessed with a quantitative iontophoretic approach. For comparative purposes, similar data were also obtained from rats 6-hydroxydopamine lesioned as adults, showing severe neostriatal dopamine denervation but no 5-HT hyperinnervation. In controls, 5-HT and its receptor agonists, m-chlorophenylpiperazine (mCPP; 5-HT1B/2C agonist) and dimethoxy-iodophenyl-aminopropane (DOI; 5-HT2A/2C agonist), depressed the firing rate of a majority of the unit tested. Three months after neonatal 6-hydroxydopamine lesion (5-HT-hyperinnervated tissue), inhibitory responses to all three agents were significantly increased and comparable results were obtained for 5-HT and DOI in the rostral versus caudal neostriatum. After 6-hydroxydopamine lesion in adults, neither responsiveness to 5-HT, mCPP or DOI nor the density of 5-HT1B or 5-HT2A binding were significantly different from control. Thus, the up-regulation of 5-HT1B, 5-HT2A and possibly 5-HT2C receptors accompanying the 5-HT hyperinnervation after neonatal but not after adult dopamine denervation was associated with increased responsiveness (IT50) of neostriatal neurons to iontophoresed 5-HT and its receptor agonists. Under these conditions, neostriatal 5-HT transmission might be enhanced in spite of a basal release seemingly comparable to normal (Jackson and Abercrombie, 1992, J. Neurochem. 58, 890).(ABSTRACT TRUNCATED AT 250 WORDS).

PMID:
8001641
DOI:
10.1016/0014-2999(94)90316-6
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center