Cytoarchitecture of size-excluding compartments in living cells

J Cell Sci. 1993 Oct:106 ( Pt 2):565-77. doi: 10.1242/jcs.106.2.565.

Abstract

By fluorescence ratio imaging of large and small inert tracer particles in living cells, we have previously shown that particles 24 nm in radius are excluded from otherwise uncharacterized compartments in the distal and perinuclear cytoplasm (Luby-Phelps, K. and Taylor, D.L., 1988. Cell Motil. Cytoskel. 10, 28-37). In this study we examined the cytoarchitecture of these compartments. Whole-mount TEM showed that distal size-excluding compartments were devoid of membrane-bounded organelles and were filled with a dense cytomatrix consisting of numerous, long bundles of thin filaments interconnected by a more random meshwork of short thin filaments. The mean diameter of void spaces in the cytomatrix of distal excluding compartments was 31 nm, compared to 53 nm in adjacent non-excluding domains. The height of the distal excluding compartments was generally < or = 50% of the height in the adjacent non-excluding compartment. An electron-dense structure having the same projected outline as the perinuclear size-excluding compartment was visible by whole-mount TEM, but the cells were too thick and osmiophilic in this region to resolve any detail. Immunofluorescence localization of cytoskeletal proteins in distal excluding compartments indicated the presence of filament bundles containing F-actin nonmuscle filamin (ABP280) and alpha-actinin. F-actin and ABP280, but not alpha-actinin, were found also in between these filament bundles. Microtubules and vimentin generally were rare or absent from distal excluding domains. Staining of living cells with DMB-ceramide revealed that the perinuclear size-excluding compartment consisted of a compact, juxtanuclear domain coinciding with the trans-Golgi, surrounded by a more diffuse domain coinciding with a perinuclear concentration of endoplasmic reticulum. Intense immunofluorescence staining for vimentin was also observed in the perinuclear size-excluding compartment. We propose that the most likely mechanism for exclusion from distal compartments is molecular sieving by a meshwork of actin filament bundles interconnected by an F-actin/ABP280 gel network, while exclusion from the perinuclear compartment may be due to close apposition of cisternae in the trans-Golgi and a network or basket of vimentin filaments in the centrosomal region of the cell.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 3T3 Cells / metabolism
  • 3T3 Cells / ultrastructure
  • Actinin / metabolism
  • Actins / metabolism
  • Animals
  • Carrier Proteins / metabolism
  • Cell Compartmentation / physiology*
  • Cell Line
  • Contractile Proteins / metabolism
  • Cytoskeleton / metabolism
  • Cytoskeleton / ultrastructure
  • Filamins
  • Mice
  • Microfilament Proteins / metabolism
  • Microscopy, Immunoelectron
  • Particle Size
  • Subcellular Fractions / metabolism
  • Subcellular Fractions / ultrastructure

Substances

  • Actins
  • Carrier Proteins
  • Contractile Proteins
  • Filamins
  • Microfilament Proteins
  • Actinin