Format

Send to

Choose Destination
Pharm Res. 1994 Aug;11(8):1155-9.

Characterization of esterase and alcohol dehydrogenase activity in skin. Metabolism of retinyl palmitate to retinol (vitamin A) during percutaneous absorption.

Author information

1
Cosmetic Toxicology Branch, Food and Drug Administration, Laurel, MD 20708.

Abstract

Retinyl palmitate, a widely used ingredient in cosmetic products, is promoted for its beneficial effects on the appearance of skin. Previous studies suggest that enzymes are available in skin to metabolize this ingredient during skin absorption. Esterase activity hydrolyzes retinyl palmitate to retinol (vitamin A), which is oxidized in many tissues to retinoic acid primarily by alcohol dehydrogenase. The activities of esterase and alcohol dehydrogenase were characterized in hairless guinea pig skin by using flow-through diffusion cells and radiolabeled model compounds (methyl salicylate and benzyl alcohol) previously shown to be metabolized by these enzymes. Methyl salicylate was hydrolyzed by esterase to a greater extent in viable skin than in nonviable skin. Glycine conjugation of salicylic acid and benzoic acid occurred only in viable skin. The metabolism of methyl salicylate and benzyl alcohol occurred to a greater extent in male guinea pig skin than in female guinea pig skin. The percutaneous absorption of both radiolabeled compounds was similar in viable and nonviable skin. About 30 and 18% of topically applied retinyl palmitate were absorbed from an acetone vehicle by hairless guinea pig skin and human skin, respectively. Less than 1% of the applied dose of this lipophilic compound diffused from skin into the receptor fluid. Retinol was the only detectable metabolite of retinyl palmitate in both hairless guinea pig and human skin. In human skin, 44% of the absorbed retinyl palmitate was hydrolyzed to retinol. The use of retinyl palmitate in cosmetic formulations may result in significant delivery of retinol into the skin.

PMID:
7971717
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center