Send to

Choose Destination
Brain Res Mol Brain Res. 1994 Jul;24(1-4):70-6.

1,25-dihydroxyvitamin D3 regulates the synthesis of nerve growth factor in primary cultures of glial cells.

Author information

Institut National de la Santé et de la Recherche Médicale, Unité U.298, Centre Hospitalier Régional et Universitaire, Angers, France.


The effect of 1,25-dihydroxyvitamin D3 (1,25-(OH)2 D3) on nerve growth factor (NGF) synthesis was investigated in primary cultures of astrocytes prepared from brain of neonatal rats. 1,25-(OH)2 D3 elicited a dose-dependent increase of NGF mRNA with a maximal effect at 10(-7) M, which persisted for at least 48 h. Northern blot analysis revealed an expression of the vitamin D3 receptor (VDR) gene in primary glial cells. Treatment of cells with 1,25-(OH)2 D3 led to an increase in the VDR mRNA levels. Similar results were obtained in C6 glioma cells. Exposure of primary glial cells to 10(-8) M 1,25-(OH)2 D3 caused only a 2-fold increase of the levels of cell-secreted NGF after 3 days of treatment. However, a 5-fold increase was observed three days after a second addition of vitamin D3. Likewise, a pretreatment with lower doses of hormone such as 10(-10) M or 10(-9) M enhanced the responsiveness of the cells to a 24 h treatment with 10(-8) M hormone. It appears, therefore, that the duration of the treatment influences the level of synthesis of NGF, possibly as a consequence of the increase of the VDR gene expression. The specificity of 1,25-(OH)2 D3 is supported by the fact that a concentration of 10(-7) M of an another vitamin D3 metabolite, 24,25-(OH)2 D3, had no effect on NGF synthesis. Several lines of evidence indicate that astrocytes constitute the major cell type responsive to 1,25-(OH)2 D3 in primary cultures of glial cells.(ABSTRACT TRUNCATED AT 250 WORDS).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center