Send to

Choose Destination
Lipids. 1994 Jul;29(7):509-16.

The distribution of brominated long-chain fatty acids in sponge and symbiont cell types from the tropical marine sponge Amphimedon terpenensis.

Author information

Department of Chemistry, University of Wollongong, NSW, Australia.


The tropical marine sponge Amphimedon terpenensis (family Niphatidae, order Haplosclerida) has previously been shown to possess unusual lipids, including unusual fatty acids. The biosynthetic origin of these fatty acids is of interest as the sponge supports a significant population of eubacterial and cyanobacterial symbionts. The total fatty acid composition of the sponge was analyzed by gas chromatography/mass spectrometry of the methyl esters. Among the most abundant of the fatty acids in intact tissue were 16:0, 18:0 and 3,7,11,15-tetramethyl-hexadecanoic (phytanic) acid. In addition, three brominated fatty acids, (5E,9Z)-6-bromo-5,9-tetracosadienoic acid (24:2Br), (5E,9Z)-6-bromo-5,9-pentacosadienoic acid (25:2Br) and (5E,9Z)-6-bromo-5,9-hexacosadienoic acid (26:2Br) were also present. The three brominated fatty acids, together with phytanic acid, were isolated from both ectosomal (superficial) and choanosomal (internal) regions of the sponge. Analysis of extracts prepared from sponge/symbiont cells, partitioned by density gradient centrifugation on Ficoll, indicated that phytanic acid and the three brominated fatty acids were associated with sponge cells only. Further, a fatty acid methyl ester sample from intact tissue of A. terpenensis was partitioned according to phospholipid class, and the brominated fatty acids were shown to be associated with the phosphatidylserine and phosphatidylethanolamine fractions that are commonly present in marine sponge lipids. The phosphatidylcholine and phosphatidylglycerol fractions were rich in the relatively shorter chain fatty acids (16:0 and 18:0). The association of brominated long-chain fatty acids (LCFA) with sponge cells has been confirmed. The findings allow comment on the use of fatty acid profiles in chemotaxonomy and permit further interpretation of LCFA biosynthetic pathways in sponges.(ABSTRACT TRUNCATED AT 250 WORDS).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center