Format

Send to

Choose Destination
J Toxicol Clin Toxicol. 1994;32(6):631-81.

Mechanisms of ethanol-drug-nutrition interactions.

Author information

1
Alcohol Research and Treatment Center, VA Medical Center, Bronx, NY 10468.

Abstract

Mechanisms of the toxicologic manifestations of ethanol abuse are reviewed. Hepatotoxicity of ethanol results from alcohol dehydrogenase-mediated excessive hepatic generation of nicotinamide adenine dinucleotide and acetaldehyde. It is now recognized that acetaldehyde is also produced by an accessory (but inducible) pathway, the microsomal ethanol-oxidizing system, which involves a specific cytochrome P450. It generates oxygen radicals and activates many xenobiotics to toxic metabolites, thereby explaining the increased vulnerability of heavy drinkers to industrial solvents, anesthetics, commonly used drugs, over-the-counter medications and carcinogens. The contribution of gastric alcohol dehydrogenase to the first pass metabolism of ethanol and alcohol-drug interactions is now recognized. Alcohol also alters the degradation of key nutrients, thereby promoting deficiencies as well as toxic interactions with vitamin A and beta-carotene. Conversely, nutritional deficits may affect the toxicity of ethanol and acetaldehyde, as illustrated by the depletion in glutathione, ameliorated by S-adenosyl-L-methionine. Other supernutrients include polyenylphosphatidylcholine, shown to correct the alcohol-induced hepatic phosphatidylcholine depletion and to prevent alcoholic cirrhosis in non-human primates. Thus, a better understanding of the pathology induced by ethanol has now generated improved prospects for therapy.

PMID:
7966525
DOI:
10.3109/15563659409017974
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center