Format

Send to

Choose Destination
Plant Mol Biol. 1994 Oct;26(1):61-71.

Modification of lignin biosynthesis in transgenic Nicotiana through expression of an antisense O-methyltransferase gene from Populus.

Author information

1
Phytotechnology Research Center, Michigan Technological University, Houghton 49931-1295.

Abstract

An aspen lignin-specific O-methyltransferase (bi-OMT; S-adenosyl-L-methionine: caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase, EC 2.1.1.68) antisense sequence in the form of a synthetic gene containing the cauliflower mosaic virus 35S gene sequences for enhancer elements, promoter and terminator was stably integrated into the tobacco genome and inherited in transgenic plants with a normal phenotype. Leaves and stems of the transgenes expressed the antisense RNA and the endogenous tobacco bi-OMT mRNA was suppressed in the stems. Bi-OMT activity of stems was decreased by an average of 29% in the four transgenic plants analyzed. Chemical analysis of woody tissue of stems for lignin building units indicated a reduced content of syringyl units in most of the transgenic plants, which corresponds well with the reduced activity of bi-OMT. Transgenic plants with a suppressed level of syringyl units and a level of guaiacyl units similar to control plants were presumed to have lignins of distinctly different structure than control plants. We concluded that regulation of the level of bi-OMT expression by an antisense mechanism could be a useful tool for genetically engineering plants with modified lignin without altering normal growth and development.

PMID:
7948906
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center