Send to

Choose Destination
Mol Microbiol. 1993 Oct;10(2):407-20.

Identification and characterization of stationary phase-inducible genes in Escherichia coli.

Author information

Department of Biology, University of Konstanz, Germany.


During transition into stationary phase a large set of proteins is induced in Escherichia coli. Only a minority of the corresponding genes has been identified so far. Using the lambda placMu system and a plate screen for carbon starvation-induced fusion activity, a series of chromosomal lacZ fusions (csi::lacZ) was isolated. In complex medium these fusions were induced either during late exponential phase or during entry into stationary phase. csi::lacZ expression in minimal media in response to starvation for carbon, nitrogen and phosphate sources and the roles of global regulators such as the alternative sigma factor sigma s (encoded by rpoS), cAMP/CRP and the relA gene product were investigated. The results show that almost every fusion exhibits its own characteristic pattern of expression, suggesting a complex control of stationary phase-inducible genes that involves various combinations of regulatory mechanisms for different genes. All fusions were mapped to the E. coli chromosome. Using fine mapping by Southern hybridization, cloning, sequencing and/or phenotypic analysis, csi-5, csi-17, and csi-18 could be localized in osmY (encoding a periplasmic protein), glpD (aerobic glycerol-3-phosphate dehydrogenase) and glgA (glycogen synthase), respectively. The other fusions seem to specify novel genes now designated csiA through to csiF. csi-17(glpD)::lacZ was shown to produce its own glucose-starvation induction, thus illustrating the intricacies of gene-fusion technology when applied to the study of gene regulation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center