Send to

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 1994 Oct;127(1):247-56.

Induction of polarized cell-cell association and retardation of growth by activation of the E-cadherin-catenin adhesion system in a dispersed carcinoma line.

Author information

  • 1Department of Biophysics, Faculty of Science, Kyoto University, Japan.


PC9 lung carcinoma cells cannot tightly associate with one another, and therefore grow singly, despite their expression of E-cadherin, because of their lack of alpha-catenin, a cadherin-associated protein. However, when the E-cadherin is activated by transfection with alpha-catenin cDNA, they form spherical aggregates, each consisting of an enclosed monolayer cell sheet. In the present work, we examined whether the alpha-catenin-transfected cell layers expressed epithelial phenotypes, by determining the distribution of various cell adhesion molecules on their surfaces, including E-cadherin, ZO-1, desmoplakin, integrins, and laminin. In untransfected PC9 cells, all these molecules were randomly distributed on their cell surface. In the transfected cells, however, each of them was redistributed into a characteristic polarized pattern without a change in the amount of expression. Electron microscopic study demonstrated that the alpha-catenin-transfected cell layers acquired apical-basal polarity typical of simple epithelia; they formed microvilli only on the outer surface of the aggregates, and a junctional complex composed of tight junction adherens junction, and desmosome arranged in this order. These results indicate that the activation of E-cadherin triggered the formation of the junctional complex and the polarized distribution of cell surface proteins and structures. We also found that, in untransfected PC9 cells, ZO-1 formed condensed clusters and colocalized with E-cadherin, but that other adhesion molecules rarely showed such colocalization with E-cadherin, suggesting that there is some specific interaction between ZO-1 and E-cadherin even in the absence of cell-cell contacts. In addition, we found that the activation of E-cadherin caused a retardation of PC9 cell growth. Thus, we concluded that the E-cadherin-catenin adhesion system is essential not only for structural organization of epithelial cells but also for the control of their growth.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center