Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1994 Oct 28;269(43):26982-7.

Multiple sites of the propeptide region of human stromelysin-1 are required for maintaining a latent form of the enzyme.

Author information

  • 1Department of Inflammatory Disease Research, DuPont Merck Pharmaceutical Company, Wilmington, Delaware 19880-0400.


Latency of matrix metalloproteinase 3 (MMP-3) is regulated by the interaction of a free cysteine residue (Cys-75) in the conserved amino acid sequence Pro-Arg-Cys-Gly-Val-Pro-Asp located in the COOH-terminal portion of the propeptide with a chelated zinc atom in the active site of the catalytic domain. Proteolytic activation of full-length human pro-MMP-3 involves the removal of approximately 35 amino acids from the NH2-terminal portion of the propeptide, forming a 53-kDa unstable intermediate that undergoes intermolecular autocatalysis to form the 45-kDa mature active enzyme. In this study, we have evaluated the contribution of the NH2-terminal 35 amino acids to the maintenance of latency. Full-length human pro-MMP-3 was expressed in Escherichia coli and refolded to form latent pro-MMP-3 capable of activation by chymotrypsin or aminophenylmercuric acetate. Renaturation of pro-MMP-3 expressed in bacteria with 20 or more amino acids removed from the NH2-terminal region of the propeptide yielded only an active enzyme. COS-7 cells transiently transfected with pro-MMP-3 expression vectors containing the single amino acid substitutions Y20A, L21A, and C75S also secreted active forms of the enzyme. These data suggest that simultaneous interactions of the NH2- and COOH-terminal regions of the propeptide are required for maintenance of the latent form of the enzyme.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center