Send to

Choose Destination
See comment in PubMed Commons below
J Mol Evol. 1994 Jun;38(6):583-92.

Highly repetitive structure and its organization of the silk fibroin gene.

Author information

Division of Biology, National Institute of Radiological Sciences, Chiba, Japan.


We have sequenced a number of cDNAs representing the Bombyx mori silk fibroin heavy chain transcript. These reveal that the central region of the fibroin gene is composed of alternate arrays of the crystalline element a and the noncrystalline element b. The core region is partitioned by a homogeneous nonrepetitive amorphous domain of around 100 bp in length. The element a is characterized by repeats of a highly conserved 18-bp sequence coding for perfect repeats of the unit peptide Gly-Ala-Gly-Ala-Gly-Ser. The element b is composed of repeats of a less-conserved 30-bp sequence which codes for a peptide similar to that in element a except in that (1) Ser is replaced by Tyr and (2) there are irregular substitutions of Ala to Val or Tyr. Therefore, the structure of the fibroin gene core consists of three-step higher-order periodicities. Heterogeneities in numbers of repeats are observed in each step of periodicity. Boundary sequence appeared in each periodicity to be quite homogeneous. Sequence analysis indicates that the unit sequences of elements a and b have homology to those of recombination hotspots reported in other genes and a recombination event may frequently occur between the misaligned sister chromatids, resulting in heterogeneities in repeat numbers and duplication or deletion of repetitive sequences. The repetitive superstructure of the fibroin gene may have been a result of continuous unequal crossovers in a primordial gene during evolution. A couple of important features of the fibroin protein were proved by the present nucleotide sequencing.(ABSTRACT TRUNCATED AT 250 WORDS)

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center