Send to

Choose Destination
Biochem Pharmacol. 1994 Jan 20;47(2):267-74.

L-trans-pyrrolidine-2,4-dicarboxylate and cis-1-aminocyclobutane-1,3-dicarboxylate behave as transportable, competitive inhibitors of the high-affinity glutamate transporters.

Author information

Division of Cell of Molecular Biology, School of Biological and Medical Sciences, University of St. Andrews, Fife, U.K.


The ability of two conformationally restricted analogues of L-glutamate to function as non-transportable inhibitors of plasma membrane L-glutamate transport was investigated in primary cultures of cerebellar granule cells and cortical astrocytes. L-trans-Pyrrolidine-2,4-dicarboxylic acid (L-trans-PDC) and cis-1-aminocyclobutane-1,3-dicarboxylic acid (cis-ACBD) behaved as linear competitive inhibitors of the uptake of D-[3H]aspartate (used as a non-metabolizable analogue of L-glutamate) exhibiting Ki values between 40 and 145 microM; L-trans-PDC being the more potent inhibitor in each preparation. However, both L-trans-PDC and cis-ACBD, over a concentration range of 1 microM-5 mM, dose-dependently stimulated the release of exogenously supplied D-[3H]aspartate from granule cells maintained in a continuous superfusion system. The stimulated release was independent of extracellular calcium ions; essentially superimposable dose-response profiles being obtained in the absence and presence of 1.3 mM CaCl2 and yielding EC50 values of 16-25 microM and 180-220 microM for L-trans-PDC and cis-ACBD, respectively. Stimulated release of D-[3H]aspartate was unaffected by either 300 microM D-(-)-2-amino-5-phosphonopentanoic acid [D-APV; a selective antagonist of the N-methyl-D-aspartate (NMDA) receptor] or by 25 microM 6-cyano-7-nitroquinoxaline-2,3-dione [CNQX; a selective antagonist of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor]. The release of D-[3H]-aspartate following stimulation by either L-trans-PDC or cis-ACBD was however markedly attenuated following substitution in the superfusion medium of sodium ions by choline ions. Taken together, these results support an action of L-trans-PDC and cis-ACBD consistent with that of being competitive substrates rather than non-transportable blockers of the plasma membrane L-glutamate uptake system.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center