Format

Send to

Choose Destination
J Biol Chem. 1995 Mar 24;270(12):6949-58.

Novel peroxisomal populations in subcellular fractions from rat liver. Implications for peroxisome structure and biogenesis.

Author information

1
Department of Metabolic Research, Wenner-Gren Institute, Arrhenius Laboratories F3, Stockholm University, Sweden.

Abstract

According to current concepts, new peroxisomes are formed by division of pre-existing peroxisomes or by budding from a peroxisomal reticulum. Recent cytochemical and biochemical data indicate that protein content in peroxisomes are heterogenous and that import of newly synthesized proteins may be restricted to certain protein import-competent peroxisomal subcompartments (Yamamoto, K., and Fahimi, H. D. (1987) J. Cell Biol. 105, 713-722; Heinemann, P., and Just, W. W. (1992) FEBS Lett. 300, 179-182; Lüers, G., Hashimoto, T., Fahimi, H. D., and Völkl, A. (1993) J. Cell Biol. 121, 1271-1280). We have observed that substantial amounts of peroxisomal proteins are found together with "microsomes" (100,000 x g pellet) after subcellular fractionation of rat liver homogenates. In this study we have investigated the origin of these peroxisomal proteins by modified gradient centrifugation procedures in Nycodenz and by analysis of enzyme activity distributions, Western blotting, and immunoelectron microscopy. It is concluded that much of this material is confined to novel populations of "peroxisomes." Immunocytochemistry on gradient fractions showed that some vesicles were enriched in acyl-CoA oxidase and peroxisomal multifunctional enzyme ("catalase-negative") whereas others were enriched in catalase and thiolase ("acyl-CoA oxidase-negative"). Double immunolabeling experiments verified the strong heterogeneity in the protein contents of these vesicles and also identified peroxisomes varying in size from about 0.5 microns ("normal peroxisomes") to extremely small vesicles of less than 100 nm in diameter. The possibility that these vesicles may be related to different subcompartments of a larger peroxisomal structure involved in protein import and biogenesis will be discussed.

PMID:
7896845
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center