Send to

Choose Destination
See comment in PubMed Commons below
Mol Biol Evol. 1995 Jan;12(1):1-6.

Protein-based phylogenies support a chimeric origin for the eukaryotic genome.

Author information

  • 1Department of Biology, McMaster University, Hamilton, Ontario, Canada.


The phylogenetic position of the archaebacteria and the place of eukaryotes in the history of life remain a question of debate. Recent studies based on some protein-sequence data have obtained unusual phylogenies for these organisms. We therefore collected the protein sequences that were available with representatives from each of the major forms of life: the gram-negative bacteria, gram-positive bacteria, archaebacteria, and eukaryotes. Monophyletic, unrooted phylogenies based on these sequence data show that seven of 24 proteins yield a significant gram-positive-archaebacteria clade/gram-negative-eukaryotic clade. The phylogenies for these seven proteins cannot be explained by the traditional three-way split of the eukaryotes, archaebacteria, and eubacteria. Nine of the 24 proteins yield the traditional gram-positive-gram-negative clade/archaebacteria-eukaryotic clade. The remaining eight proteins give phylogenies that cannot be statistically distinguished. These results support the hypothesis of a chimeric origin for the eukaryotic cell nucleus formed from the fusion of an archaebacteria and a gram-negative bacteria.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center