Send to

Choose Destination
Am J Physiol. 1995 Feb;268(2 Pt 1):C503-12.

Depletion and filling of intracellular calcium stores in vascular smooth muscle.

Author information

Department of Physiology, Loyola University Chicago, Maywood, Illinois 60153.


In vascular smooth muscle, binding of vasoactive substances to surface membrane receptors leads to a rise of intracellular cytoplasmic Ca2+ and to contraction. Cytoplasmic free Ca2+ concentration ([Ca2+]i) increases through release of Ca2+ from intracellular stores and Ca2+ entry through surface membrane ion channels. Membrane-permeant and membrane-impermeant forms of fura 2 were used to distinguish changes in intracellularly stored Ca2+ ([Ca2+]s) from changes in [Ca2+]i. The spatiotemporal patterns of the movement of Ca2+ between these two cellular compartments in cultured vascular smooth muscle cells (A7r5 cell line) were visualized with digital imaging fluorescence microscopy. The Ca2+ stores were localized by double staining with a fluorescent organelle-specific dye and the Ca2+ indicator. [Ca2+]s was measured after accumulation of the membrane-permeant form of fura 2 inside the stores and quenching of the fura 2 fluorescence in the cytoplasmic compartment with manganese. Stimulation with vasopressin led to a transient increase of [Ca2+]i and a concomitant decrease of [Ca2+]s. After stimulation with vasopressin, [Ca2+]i returned rapidly to normal resting levels, whereas the recovery of [Ca2+]s occurred on a much slower time scale. The refilling pathway of depleted stores involved Ca2+ entry into the bulk cytoplasmic compartment before uptake into the stores.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center